The Tangent of 2X

No Thumbnail Available

Authors

Rigge, William F., S.J.

Issue Date

1922-10

Type

Article

Language

en_US

Keywords

Rigge Papers , Mathematics

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

First Paragraph | The object of this article is to show an interesting and practical application of one of the well-known formulas of trigonometry that appear to be so dry and valueless to the student who must memorize them, and so purely theoretical and pedagogical to the instructor who exacts them. It is the formula tan 2x = 2 tanx/(I —tan2x). This can be used to find the focal length as well as the position of the camera in certain cycloramic pictures. The essential element of this picture must be a straight wall of some kind or its equivalent, or at the very least, certain five points that we need must be in a straight line, such as the points, A, B, P, E, D, in the diagram, and this line must be so placed that it will contain the foot of the perpendicular P dropped to it from the camera C. With this requirement we combine the fact that, as the camera lens revolves, equal fractional lengths of the film will correspond to equal horizontal angles in space, the exact proportion being unknown at the start. These two, the straight wall and the equiangular film, will solve the problem.

Description

Reprint

Citation

Publisher

License

Journal

Volume

Issue

PubMed ID

DOI

ISSN

EISSN